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Abstract 
 

The Moliere theory of multiple Coulomb scattering is modified to take into account difference 
between scattering off atomic nuclei and electron. A simple analytical expression for angular 
distribution of charged particles passing through a thick absorber is found. It does not assume any 
special form for a differential scattering cross section and has wider range of applicability than a 
Gaussian approximation. A well-known method to simulate multiple Coulomb scattering is based on 
the different treatment of “soft” and “hard” collisions. An angular deflection in a large number of 
“soft” collisions is sampled using the proposed distribution function, a small number of “hard” 
collision are simulated directly. A boundary between “hard” and “soft” collisions is defined providing 
a precise sampling of a scattering angle (1% level) and a small number of “hard” collisions. A 
corresponding simulating module takes into account projectile and nucleus charged distributions and 
exact kinematics of a projectile-electron interactions.  
 
 
 
 
 
 
________________________ 
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Abstract – The Moliere theory of multiple Coulomb scattering is modified to take into account difference between scattering off 
atomic nuclei and electron. A simple analytical expression for angular distribution of charged particles passing through a thick 
absorber is found. It does not assume any special form for a differential scattering cross section and has wider range of 
applicability than a Gaussian approximation. A well-known method to simulate multiple Coulomb scattering is based on the 
different treatment of “soft” and “hard” collisions. An angular deflection in a large number of “soft” collisions is sampled using 
the proposed distribution function, a small number of “hard” collision are simulated directly. A boundary between “hard” and 
“soft” collisions is defined providing a precise sampling of a scattering angle (1% level) and a small number of “hard” 
collisions. A corresponding simulating module takes into account projectile and nucleus charged distributions and exact 
kinematics of a projectile-electron interactions. 
 
INTRODUCTION 

Multiple scattering of charged particles in the 
Coulomb field of nuclei is of interest for numerous 
applications related to particle transport in matter. A 
comprehensive comparison of the Moliere theory(1) 
with experimental data on multiple scattering of 1 
MeV to 200 GeV protons shows that this theory, with 
the Fano correction(2), is accurate to better than 1% on 
average(3) except for thick absorbers(4) and for 
hydrogen targets at high energies(3). 
 

NEW ASYMPTOTIC FOR THICK SCATTERERS 

An angular distribution of a charged particle after 
passing through an absorber of a length t, can be 
written as 
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In this case, the angular distribution can be rewritten in 
a simple form 

))(3)(1()exp(),( 4
2

22 K+++
〉〈

−= φφ
θπ

φθ LrrLtF , (4) 

where kL  are the Laguerre polynomials. 
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For a large thickness, the parameter r becomes small 
and one or two terms in (3) are enough to provide a 
reasonable accuracy. 

Note, that the Moliere theory is based on a single 
scattering cross section, which has infinite moments 
(3). Therefore, this theory has a wrong asymptotic at 
large thicknesses. This problem can be overcome if a 
finite nuclear size is taken into account. The solution 
for an angular distribution was obtained(4) under an 

 
Figure 1. Ratio of asymptotic (4) and precise angular 
distribution(4). . Dashed line is a first term in (4), solid line is 
first two terms in (4). 
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assumption that the charge distribution in nuclei is 
Gaussian. It coincides with Moliere for a thickness of 
0.1-1 radiation lengths and reaches Gaussian for 100-
1000 radiation lengths. This modification of the 
Moliere theory can be used to find a range of the 
applicability of the approximation (4). It is shown in 
Fig.1 that two first terms in (4) provide about 1% 
agreement with a precise calculation for four orders of 
magnitude at 01.0≥r . One term in (4) (Gaussian 
distribution) is enough to describe first two decades 
only. For r>0.05, the new approximation with first two 
terms provides better than 10% accuracy. In more 
convenient units, range of the validity of this 
approximation can be estimated from 

tZ
Xr
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where X0 is a radiation length and Z is a charge of the 
absorber nuclei. 

SCATTERING OFF ATOMIC ELECTRONS 
AND MOLIERE THEORY 

A charged particle traversing medium is deflected 
primarily by elastic collisions in the Coulomb field of 
nuclei. Inelastic collisions with atomic electrons also 
should be taken into account. To estimate a 
contribution of inelastic collisions, Bethe proposed(1) 
to replace the squared nuclear charge Z2 with the sum 
of the squares of the nuclear and electronic charges 
Z(Z+1). This procedure would be accurate if the single 
scattering cross sections were the same for nucleus and 
electron targets. The actual cross sections are different 
at small and large angles. Let’s consider a modification 
to the Moliere theory, which takes into account these 
differences. 

Elastic scattering cross section reads(1) 
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where ze,p,β are charge, momentum and velocity of 
the incident particle, qel(χ) is a screening function, N is 
the Avogadro’s number and A is an atomic weight of 
target material. 

The recoil imparted to atomic electron by incident 
heavy particle cannot exceed a certain limit, so a 
simple approximation of the inelastic cross section is 
given by 
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χmax  is so chosen, that the mean-squared angle 
resulting from (7) is adjusted to the mean-squared 
angle calculated from the precise cross section. 

Using (1), (2), (5), (7), the angular distribution can 
be written as 
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At small thicknesses (w>>1), the distribution (8) is 
described by the Moliere function with parameters 
defined from (6) and (9). At large thicknesses (w<<1), 
(8) also coincides with Moliere, but parameters are 
calculated using  
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Figure 2. Ratio of the modified Moliere theory and Bethe 
approach for 10 GeV/c muon on a hydrogen absorber. Solid 
line is Eq.(8), dotted line is Eq.(9), dashed line is Eq.(10). 
Symbols are Monte Carlo simulations. 
 
Fig.2 shows a ratio of angular distributions calculated 
using equation (8), (9), (10) and the Moliere 
distribution obtained using the Bethe Z(Z+1) approach. 
It is seen that a standard Z(Z+1) approximation agrees 
well with more precise consideration (8) for small 
angles, but it overestimates angular distribution by 
50% at large angles for hydrogen. Calculations for 
other targets show that this large-angle ratio is simply 



–4– 

Z/(Z+1). The asymptotics (9) and (10) have been 
obtained by Fano(2). He believed that solution (9) is 
valid for incident electrons and solution (10) can be 
applied for heavy particles. Our consideration shows 
that the above limits have different ranges of 
applicability. If w>>1, solution (9) should be used 
even for heavy particles. As shown in Table 1, this 
conclusion is supported by experiment. 
 
Table 1. Ratio of measured and calculated widths of angular 
distributions.  
Z  w     Exp/Bethe  Exp/Fano(9)  Exp/Fano(10) 

1  9.7   0.99±0.01  0.96±0.01     0.88±0.01    

4  10.3 1.02±0.04 1.00±0.04     0.96±0.04    

6  9.8   1.03±0.04 1.01±0.04     0.98±0.04    

4  0.12 1.00±0.06 0.98±0.06     1.03±0.06    

6  0.10 0.97±0.04 0.95±0.04 0.98±0.04    

 
Low-w measurements(3)  agree well with formula (10), 
but at large w formula (9) is much closer to data(5) than 
the original Fano result (10). Note, that widths of 
angular distributions were measured at small angles 
(θ/θM <2). Therefore, the Bethe approach looks like 
perfect in Table 1. But as was shown above, this 
approximation overestimates the large angle scattering. 
 

MONTE CARLO APPROACH  

An efficient method to simulate multiple scattering 
is based on a separate treatment of “soft” and “hard” 
interactions. Angular deflection in a large number of 
“soft” collisions is sampled from a “continues” 
distribution, “hard” scatterings are simulated 
explicitly(6). There is an obvious correlation between 
precision and efficiency of the algorithm and the value 
of a boundary angle θb between “soft” and “hard” 
collisions. For small θb, a number of discrete inte- 
ractions is large and precision is high, for larger θb, the 
efficiency increases but the accuracy decreases. The 
optimal value of a boundary angle is important but still 
an open question. 

It can be shown that the “continues” distribution is 
given by  
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A range of the applicability of (11) is defined as  
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For any step of length t, the boundary angle θb can be 
calculated from equation (12). For elastic scattering 
using (5), (6), equation (12) can be rewritten as 
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A solution of equation (13) with better than 10% 
accuracy is given by 
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The derivation between the exact and approximate 
solutions can be considered as a redefinition of δ. For 
very small thicknesses (about 0.001 of a radiation 
length) equation (13) can not be resolved for an 
arbitrary δ. In this case, a maximal possible value of δ  
can be used. To perform simulation with an arbitrary 
nuclear form factor, the boundary angle should be 
limited at a large step 
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where 2
nucr  is an average nuclear radius squared. At 

large thicknesses, a number of “hard” interactions 
becomes not small. In this case, the angular 
distribution is well described by the approximation (4). 
Scattering angles can be sampled directly from (4). A 
comparison of angular distributions simulated by the 
above algorithm and calculated using analytical 
solutions(1,4) shows that results agree within about 1% 
for δ = 0.03. As shown in Fig.3, a number of “hard” 
elastic scatterings is small for this value of δ. 
 

 
Figure 3. Average number of “hard” elastic collisions. 
 

The boundary angle θin for inelastic collisions can 
be obtained also from (13). In this case 
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The procedure of determination of the inelastic 
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boundary angle was checked by comparison of Monte 
Carlo simulation based on simple cross sections (5), 
(6), (7) and analytical solution (8), (9). Results agree 
within about 1% if δin < 0.1. Equations (13), (16) were 
obtained for small angles for which only the Ruzerford 
part of the cross section is important. So, the inelastic 
boundary angle should be limited by 
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where ∆min and εmax are the minimum and maximum 
energies transferred to electron in a single collision. 

In inelastic scattering with electron, the projectile 
undergoes angular deflection and loses energy. For 
discrete inelastic collisions, the correlation between the 
energy loss and scattering angle is determined by 
kinematics. “Continuous” energy losses are described 
well by the Vavilov distribution with redefined 
parameters(7). It is known(7)  that a log-normal 
distribution fits well the Vavilov function for 
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With the boundary inelastic angle determined from 
(16)-(18), the average number of inelastic discrete 
collisions is small, in most cases it is about κ. A 
comparison of simulations and the modified Moliere 
theory for hydrogen is shown in Fig.2. The theory 
based on the approximation (7) reproduces main 
features, but at large angles and small thicknesses 
Monte Carlo, which uses a more precise cross section, 
should be applied. Note, that in such an approach, the 
energy loss and angular distributions are correlated, at 
least for low-Z targets. 

A comparison of the Monte Carlo simulation and 
analytical calculation for high-Z target is presented in 

Figure 4. Angular distributions of 50 GeV/c muon passing 
through a uranium absorber. Symbols - Monte Carlo 
simulation, solid line – theory(4). 
 
Fig.4. The theory(4) is based on a Gaussian model of a 
nuclear charge density, a more precise Fermi model 
can be used in Monte Carlo. If the Gaussian formfactor 
is used in simulation and numerical integration, results 
agree within 1%. If the Fermi charge density is used in 
Monte Carlo the difference between theory and 
simulation becomes noticeable at large angles.  
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